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Levins and MacArthur (1969) have modeled the 
conditions under which an insect ought to increase 
the variety of plants on which it oviposits. They as- 
sume that an insect's reproductive success is a mul- 
tiplicative function of the probability of its finding 
an acceptable host plant, and the number of young 
produced if such a plant is found. The number of 
young produced depends on the suitability (presence 
or absence of competitors, toxicity, etc.) of the plant. 
Qualitatively, they predict that an insect should in- 
crease the number of plant species on which it will 
oviposit if the probability of finding one of its host 
plants is low, or if the array of new plants utilized 
does not include too many unsuitable species. Some 
unsuitable species may be used because the insect 
does not possess the neurosensory ability to distin- 
guish them from those that are suitable. This note 

relates these considerations to the observed host- 
plant ranges of two members of the Drosophila qui- 
naria species group, D. quinaria and D. falleni. 

Suspected larval resources (fungi, slime fluxes, 
oozing sap flows, fruits, flowers, and decaying 
leaves, bark, and wood) were collected from various 
localities in Maine and New York State. They were 
placed on a layer of wet sand in 350 ml plastic cups, 
which were sealed with plastic wrap, perforated for 
ventilation. Cultures were incubated at 20 + 1 C. 
Drosophila species were identified when they 
emerged as adults. 

The only resource from which D. quinaria 
emerged is the skunk cabbage, Symplocarpus foeti- 
dus (Araceae) (Table 1). The only other drosophilid 
reared from these plants is Scaptomyza borealis, 
which was not bred from any other potential re- 
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source. In the spring, D. quinaria breeds in the flow- 
ers, spathes, and spadices of these plants, whereas 
in late summer and fall, it utilizes the decaying leaves 
and petioles. This finding and the fact that the ranges 
of D. quinaria and S. foetidus are nearly coextensive 
(Sturtevant, 1921; Patterson and Wagner, 1943; 
Rickett, 1966) suggest that the former is a monopha- 
gous species. This is easy to understand in terms of 
the Levins-MacArthur hypothesis. Because skunk 
cabbages appear in the same localities, at approxi- 
mately the same time, year after year (Fernald, 
1950), individuals of D. quinaria have a high prob- 
ability of finding a resource upon which to oviposit. 
An individual that accepted more species as host 
plants would have only a slightly greater chance of 
finding one of them, while it would incur a poten- 
tially serious risk-the inclusion of unsuitable species 
among those accepted. Other host plants may be un- 
suitable because of competition with other insect 
groups (see below). Selection favors monophagy. 

Wheeler (1954) has found that the closely related 
D. magnaquinaria breeds in a related skunk cab- 
bage, Lysichiton americanum, in the Pacific North- 
west. Both species of skunk cabbages, and members 
of the Araceae in general, are extensively riddled 
with raphides of calcium oxalate, which render the 
plants nearly immune to attack by insects (B. J. D. 
Meeuse, pers. comm.). These two Drosophila species 
must have some adaptation, probably derived from 
a common ancestor, that has facilitated use of and 
coevolution with these Araceae (Ehrlich and Raven, 
1964). It is conceivable that monophagy in these spe- 
cies is enforced by their dependence on skunk cab- 
bages for specific nutrients [cf. D. pachea (Heed and 
Kircher, 1965)]. However, this idea is unlikely, as 
both species can be maintained in the laboratory on 
standard media (Sturtevant, 1921; Wheeler, 1954). 
In any event, such obligate dependence on one host 
species would most likely be a result of monophagy, 
not a primary cause of it. 

Carson (1971) suggests that the widespread use of 
decaying leaves by Hawaiian Drosophila evolved in 
the absence of competition from other insect groups. 
On the North American continent, preemption of 
this niche by these other groups presumably prevents 
its use by Drosophila (McDonald et al., 1974). As 
reported here, D. quinaria breeds in the decaying 
leaves of Symplocarpus foetidus in eastern North 
America. I suggest that the absence of competitors, 
which is due to the presence of calcium oxalate, has 
allowed D. quinaria, and probably D. magnaqui- 
naria to evolve an adaptation for breeding in the 
decaying leaves of these Araceae. 

In contrast to D. quinaria, D. falleni is polypha- 
gous, breeding in many taxonomically diverse spe- 
cies of fleshy fungi (Table 1). Other drosophilids 
reared from these fungi include D. busckii, D. pu- 
trida, D. testacea, Leucophenga varia, and Myco- 
drosophila dimidiata, none of which is monopha- 
gous. D. falleni does not utilize fungi that do not 
deliquesce (e.g., Fomes) nor those that are very small 
(e.g., Marasmius). The mushrooms in which it does 

TABLE 1. Breeding sites of D. quinaria and D. fal- 
leni. 

Adults reared 

D. 
D. quin- 

Substrate N falleni aria 

Symplocarpus foetidus 
flowers 70 262 
leaves and petioles 9 19 

Clavulina cinerea 6 1 
Suillus tomentosus 16 2 
Boletus chrysenteron 25 19 
Pluteus cervinus 2 26 
Lactarius lignyotus 2 6 
Russula emetica 15 8 

subfoetans 60 89 
Amanita bisporigera 4 51 

fiavoconia 16 59 
flavorubescens 16 169 
gemmata 16 19 
inaurata 8 46 
muscaria 25 557 
rubescens 13 353 
virosa 10 207 

breed contain a variety of potentially toxic princi- 
ples. For example, D. falleni has been reared from 
Amanita muscaria, which contains a number of al- 
kaloid neurotoxins, very high concentrations of va- 
nadium (Bertrand, 1950), and which is a renowned 
flykiller. It also utilizes A. bisporigera and A. virosa, 
both of which contain highly toxic amanitins, short- 
chain cyclic polypeptides that damage cell mem- 
branes and disrupt RNA synthesis (Wieland, 1968). 
D. falleni may cope with this spectrum of potential 
toxins in a number of ways. On the one hand, it may 
possess an arsenal of enzymes, each specifically se- 
lected to detoxify a given poison (e.g., Teas, 1967). 
Alternatively, or in addition, it may have high ac- 
tivity levels of mixed-function microsomal oxidases, 
or other general-purpose enzymes, which are thought 
to detoxify a variety of poisons (Krieger et al., 197 1). 
In any case, as D. falleni appears unaffected by these 
potentially toxic compounds, the proportion of 
mushroom species that are unsuitable probably is 
small. Acceptance of a broader range of fungi on 
which to oviposit would include a relatively insig- 
nificant number of unsuitable species. 

Individual mushroom species are an unpredictable 
resource in both space and time (Kauffman, 1918; 
Orlos, 1975), making the probability of finding a giv- 
en species on which to oviposit very low. Because of 
this, and because the inclusion of more host species 
is unlikely to expose offspring of D. falleni to poten- 
tial toxins that they cannot tolerate, selection will 
favor an increase in the variety of acceptable host 
plants. D. falleni probably breeds in a large number 
of mushroom species. 

Additional support for the Levins-MacArthur hy- 
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pothesis comes from the rich drosophilid fauna of 
Hawaii (Heed, 1968). Here, many of the species are 
monophagous, breeding in the fermenting parts of 
abundant tree species. These resources must be high- 
ly predictable in occurrence. The polyphagous spe- 
cies tend to breed in less predictable resources, e.g., 
fungi. However, in contrast to D. quinaria and D. 
falleni, larval habitats and taxonomic affinity are 
closely correlated in the Hawaiian Drosophilidae 
(Heed, 1968; 1971). 

Finally, consider the relation between host-plant 
predictability and defensive chemistry. Recent stud- 
ies (Feeny, 1975; 1976; Rhoades and Cates, 1976) 
suggest that host plants and parts thereof that are 
predictable in occurrence should contain relatively 
high concentrations of compounds that are difficult 
to render harmless. Different plant species that are 
predictable should converge on a common strategy. 
Skunk cabbages and other Araceae have adopted 
this strategy by laying down high concentrations of 
calcium oxalate crystals, which are not readily de- 
toxified. On the other hand, plant species or parts 
whose occurrence is unpredictable should employ a 
wide variety of compounds that are effective in small 
concentrations. However, an animal that has coun- 
teradapted to these compounds may detoxify them 
at a low metabolic cost. Mushrooms appear to be so 
defended. Thus, some lethal amanitins, which are 
present in very low concentrations (.014% wet 
weight), are rendered thoroughly non-toxic by a sim- 
ple dehydroxylation (Wieland, 1968). Their unpre- 
dictability makes the probability of counteradapta- 
tion rather slim. However, for D. quinaria and D. 

falleni, it appears that the predictability of occur- 
rence has been of greater selective importance than 
the chemical diversity of larval resources in the evo- 
lution of monophagy and polyphagy. 
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